organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(2*E*)-2-(4-Chlorobenzylidene)hydrazinylidene]-1-methyl-1,4-dihydropyridine monohydrate

Abdullah Aydın,^a* Mehmet Akkurt,^b Vildan Alptüzün,^c Orhan Büyükgüngör,^d Ulrike Holzgrabe^e and Krzysztof Radacki^f

^aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Ízmir, Turkey, ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, ^eInstitute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland 97074 Würzburg, Germany, and ^fInstitute of Inorganic Chemistry, University of Würzburg, Am Hubland 97074 Würzburg, Germany Correspondence e-mail: aaydin@kastamonu.edu.tr

Received 23 April 2010; accepted 28 April 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.095; data-to-parameter ratio = 16.2.

In the title compound, $C_{13}H_{12}ClN_3 H_2O$, the organic molecule is almost planar, with a dihedral angle of 3.22 (10)° between the benzene and pyridine rings. The crystal structure is stabilized by $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonding and $\pi-\pi$ stacking interactions [centroid–centroid distances = 3.630 (1) and 3.701 (1) Å].

Related literature

For the synthesis and pharmacological activity of (benzylidene-hydrazono)-1,4-dihydropyridine derivatives, see: Douglas *et al.* (1977); Alptüzün *et al.* (2010); Savini *et al.* (2002); Pandey *et al.* (2002); Salgın-Gökşen *et al.* (2007); Silva *et al.* (2004); Vicini *et al.* (2009). For bond-length data, see: Allen *et al.* (1987); Diao *et al.* (2008); Odabaşoğlu *et al.* (2003). For quantum-chemical calculations, see: Pople & Beveridge (1970).

Experimental

Crystal data $C_{13}H_{12}CIN_3 \cdot H_2O$ $M_r = 263.72$

Monoclinic, $P2_1/c$ a = 5.8492 (4) Å

b = 20.3101 (10) Å	Mo K
c = 12.2035 (7) Å	$\mu = 0$
$\beta = 113.855 \ (4)^{\circ}$	T = 2
$V = 1325.90 (14) \text{ Å}^3$	0.60
Z = 4	

Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.905$, $T_{max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.095$ S = 0.952759 reflections 170 parameters Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 296 K $0.60 \times 0.30 \times 0.04 \text{ mm}$

14028 measured reflections 2759 independent reflections 1746 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.064$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.16$ e Å⁻³ $\Delta \rho_{\rm min} = -0.18$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N1$	0.84 (3)	2.26 (3)	3.089 (3)	173 (3)
$O1 - H1B \cdot \cdot \cdot N2^{i}$	0.91 (4)	1.95 (4)	2.859 (3)	174 (2)
C3-H3···O1 ⁱⁱ	0.93	2.58	3.421 (3)	150
$C11 - H11 \cdots O1^{iii}$	0.93	2.49	3.378 (3)	159

Symmetry codes: (i) x + 1, y, z; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x, -y + 1, -z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2782).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Alptüzün, V., Prinz, M., Hörr, V., Scheiber, J., Radacki, K., Fallarero, A., Vuorela, P., Engels, B., Braunschweig, H., Erciyas, E. & Holzgrabe, U. (2010). *Bioorg. Med. Chem.* 18, 2049–2059.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Diao, Y.-P., Huang, S.-S., Kong, Y., Xia, M.-Y. & Meng, D.-L. (2008). Z. Kristallogr. New Cryst. Struct. 223, 285–286.

Douglas, W. A., Fishinger, J. J., Gund, P., Haris, E. E., Olson, G., Patchett, A. A. & Ruyle, V. W. (1977). J. Med. Chem. 20, 939–943.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). *Acta Cryst.* C**59**, 0234–0236.
- Pandey, J., Pal, R., Dwivedi, A. & Hajela, K. (2002). Arzneimittelforschung, 52, 39–44.
- Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw-Hill.

- Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., İşık, Ş., Aktay, G. & Özalp, M. (2007). *Bioorg. Med. Chem.* **15**, 5738–5751.
- Savini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Silva, G. A., Costa, L. M. M., Brito, F. C. F., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2004). *Bioorg. Med. Chem.* **12**, 3149–3158.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Vicini, P, Incerti, M., La Colla, P. & Loddo, R. (2009). Eur. J. Med. Chem. 44, 1801–1807. supplementary materials

Acta Cryst. (2010). E66, o1324-o1325 [doi:10.1107/S1600536810015709]

4-[(2E)-2-(4-Chlorobenzylidene)hydrazinylidene]-1-methyl-1,4-dihydropyridine monohydrate

A. Aydin, M. Akkurt, V. Alptüzün, O. Büyükgüngör, U. Holzgrabe and K. Radacki

Comment

Hydrazones, a special group of compounds in the class of the schiff bases, are known to show significant biological activities including antimicrobial, antitubercular, anticancer, analgesic, anti-inflammatory, antiplatelet and antiviral activities (Savini *et al.*, 2002; Pandey *et al.*, 2002; Salgın-Gökşen *et al.*, 2007; Silva *et al.*, 2004; Vicini *et al.*, 2009). In addition, (benzylidene-hydrazono)-1,4-dihydropyridine derivatives have anticoccidial activity (Douglas *et al.*, 1977) and also display anti-Alzheimer's activity by inhibiting ABeta fibril formation and acetylcholinesterase (Alptüzün *et al.*, 2010).

The title molecule (I), Fig. 1, crystallized as a monohydrate in the monoclinic space group $P2_1/c$. All bond lengths are as expected (Allen *et al.*, 1987). The Cl1—C4, and N1—N2 bond lengths are 1.742 (2) Å, and 1.388 (2) Å, respectively. The Cl1—C4—C5 and N2—N1—C7 bond angles are 119.88 (18) ° and 113.95 (19) °, respectively. The bond lengths and the bond angles of (I) are comparable to those observed in related structures (Diao *et al.*, 2008; Odabaşoğlu *et al.*, 2003).

The main molecule is almost planar, except the methyl H atoms, forming a dihedral angle of $3.22 (10)^{\circ}$ between the benzene (C1–C6) and dihydropyridine (N3/C8–C12) rings.

The crystal structure is stabilized by O—H···N and C—H···O hydrogen bonding (Table 1, Fig. 2) and π - π stacking interactions [Cg1···Cg1(-x, 1-y, -z) = 3.630 (1) Å and Cg1···Cg2(1-x, 1-y, 1-z) = 3.701 (1) Å, Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively].

We have also carried out the quantum mechanical calculations using the *CNDO* (Pople *et al.*, 1970) approximation. The spatial view of the single molecule considered in a vacuum, is shown in Fig.3. According to the theoretical *CNDO* and experimental X-rays results, the values of the geometric parameters of (I) are closely comparable within the observed experimental errors. The calculated dipole moment of (I) is about 11.481 Debye. The *HOMO* and *LUMO* energy levels are -8.3484 and 1.3565 eV, respectively.

Experimental

4-Hydrazinylpyridine (1.09 g, 0.01 mol) and 4-chlorobenzaldehyde (1.41 g, 0.01 mol) were stirred in ethanol (30 ml) at room temperature for 5-10 h. The precipitate was filtered and washed with cool ethanol and crystallized from ethanol. A mixture of 4-[(4-Chlorobenzylidene)hydrazinyl] pyridine (0.232 g, 0.001 mol) and methyl iodide (0.141 g, 0.002 mol) was refluxed in ethanol (20 ml) for 20 h. The mixture was cooled to room temperature and the resulting precipitate was filtered and washed with cool ethanol. The crude products were crystallized from ethanol to give the compound 4-(2-(4-Chlorobenzylidenehydrazinyl)-1-methylpyridinium iodide. This product (0.374 g, 0.001 mol) was partitioned between CH_2Cl_2 (50 ml) and 2 M NaOH (50 ml). The organic layer was evaporated to dryness and the residue recrystallized from ethanol-water.

Yield 88%, yellow needles, mp 407-409 K (lit. (Douglas *et al.*, 1977) 403-405 K). IR (KBr) *v*_{max} 1654, 1517, 1492, 1203, 824 cm⁻¹. ¹H-NMR (DMSO-d₆): δ ppm 3.29 (3*H*, s, N—CH₃), 6.12 (1*H*, dd, J=2.4/8.0 Hz, H-3 or H-5), 6.98 (1*H*,

supplementary materials

dd, J=2.0/7.8 Hz, H-3 or H-5), 7.23 (2*H*, td, J=7.2/2.0 Hz, H-2, H-6), 7.39 (2*H*, d, J=8.4 Hz, H-2', H-6'), 7.69 (2*H*, d, J=8.4 Hz, H-3', H-5'), 8.16 (1*H*, s, N=CH). 13 C NMR (CH₃OH- d4): δ ppm 43.18 (q), 107.78 (d), 112.11 (d), 129.35 (d), 129.79 (d), 135.59 (s), 136.58 (s), 140.15 (d), 140.75 (d), 148.84 (d), 162.25 (s). EI—MS m/z (% relative intensity): 247 (M+2, 14), 246 (M+1, 28), 245 (M+, 43), 181 (25), 93 (100), 92 (24), 66 (30), 42 (18). C₁₃H₁₂N₃Cl.H₂O. C, H, N combustion analysis: Calc. (%) C 59.21, H 5.36, N 15.93; found (%) C 59.45, H 5.33, N 15.72.

Refinement

The H atoms of the water molecule were found from a difference Fourier map and their isotropic thermal parameters were refined by using a riding model with $U_{iso}(H) = 1.5U_{eq}(O)$. Their positional parameters are refined freely [d(O-H) = 0.84 (3)] and 0.91 (4) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.96 Å, and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. An ORTEP View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2. The packing and hydrogen bonding interactions of (I) down the a-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

Fig. 3. The spatial view of the title molecule (I), calculated by the CNDO aproximation.

4-[(2E)-2-(4-Chlorobenzylidene)hydrazinylidene]-1-methyl- 1,4-dihydropyridine monohydrate

Crystal data	
$C_{13}H_{12}ClN_3\cdot H_2O$	F(000) = 552
$M_r = 263.72$	$D_{\rm x} = 1.321 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 11448 reflections
a = 5.8492 (4) Å	$\theta = 1.8 - 27.3^{\circ}$
b = 20.3101 (10) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 12.2035 (7) Å	<i>T</i> = 296 K
$\beta = 113.855 \ (4)^{\circ}$	Needle, yellow
$V = 1325.90 (14) \text{ Å}^3$	$0.60 \times 0.30 \times 0.04 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDS 2	2759 independent reflections

diffractometer	
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	1746 reflections with $I > 2\sigma(I)$
plane graphite	$R_{\rm int} = 0.064$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$k = -25 \rightarrow 25$
$T_{\min} = 0.905, \ T_{\max} = 0.989$	$l = -15 \rightarrow 15$
14028 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.095$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.95	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0426P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2759 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
170 parameters	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

A actional atomic coordinates and isotropic of equivalent isotropic displacement parameters (A)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.22894 (12)	0.72508 (3)	0.80784 (5)	0.0626 (2)
N1	0.3123 (3)	0.56701 (10)	0.35465 (13)	0.0453 (6)
N2	0.0774 (3)	0.54841 (9)	0.27204 (13)	0.0441 (6)
N3	0.0599 (4)	0.39257 (9)	0.05147 (14)	0.0478 (6)
C1	0.5371 (4)	0.63831 (11)	0.52012 (15)	0.0414 (7)
C2	0.5222 (4)	0.69371 (12)	0.58483 (16)	0.0452 (7)
C3	0.7336 (4)	0.72021 (11)	0.67306 (16)	0.0466 (7)

supplementary materials

C4	0.9614 (4)	0.69105 (12)	0.69752 (16)	0.0449 (7)
C5	0.9807 (4)	0.63606 (12)	0.63540 (16)	0.0460 (8)
C6	0.7697 (4)	0.60996 (12)	0.54740 (16)	0.0460 (7)
C7	0.3079 (4)	0.61193 (11)	0.42743 (16)	0.0435 (7)
C8	0.0859 (4)	0.49832 (11)	0.20400 (15)	0.0396 (7)
C9	0.3019 (4)	0.46263 (11)	0.21152 (16)	0.0437 (7)
C10	0.2819 (4)	0.41223 (12)	0.13694 (18)	0.0480 (7)
C11	-0.1504 (4)	0.42521 (12)	0.04046 (17)	0.0473 (7)
C12	-0.1430 (4)	0.47578 (12)	0.11261 (16)	0.0449 (7)
C13	0.0497 (5)	0.33651 (13)	-0.0272 (2)	0.0668 (10)
O1	0.6224 (4)	0.61903 (10)	0.21954 (15)	0.0611 (7)
H2	0.36750	0.71300	0.56810	0.0540*
Н3	0.72240	0.75730	0.71540	0.0560*
Н5	1.13590	0.61680	0.65300	0.0550*
H6	0.78280	0.57290	0.50560	0.0550*
H7	0.15450	0.62820	0.42110	0.0520*
Н9	0.45830	0.47440	0.26870	0.0520*
H10	0.42620	0.38990	0.14420	0.0580*
H11	-0.30330	0.41230	-0.01840	0.0570*
H12	-0.29140	0.49680	0.10280	0.0540*
H13A	0.18000	0.34090	-0.05550	0.1000*
H13B	-0.10970	0.33600	-0.09420	0.1000*
H13C	0.07200	0.29620	0.01700	0.1000*
H1A	0.551 (6)	0.6046 (17)	0.262 (2)	0.0920*
H1B	0.768 (6)	0.5959 (17)	0.242 (2)	0.0920*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0551 (4)	0.0646 (4)	0.0574 (3)	-0.0114 (3)	0.0116 (2)	-0.0153 (3)
N1	0.0411 (10)	0.0499 (12)	0.0415 (8)	-0.0024 (9)	0.0133 (7)	-0.0039 (8)
N2	0.0365 (10)	0.0484 (12)	0.0446 (8)	-0.0022 (9)	0.0135 (7)	-0.0053 (8)
N3	0.0558 (12)	0.0433 (12)	0.0455 (9)	-0.0060 (10)	0.0216 (8)	-0.0054 (8)
C1	0.0461 (13)	0.0438 (13)	0.0351 (9)	-0.0015 (11)	0.0173 (9)	0.0023 (8)
C2	0.0453 (13)	0.0457 (14)	0.0446 (10)	0.0042 (11)	0.0182 (9)	0.0017 (9)
C3	0.0577 (14)	0.0395 (13)	0.0434 (10)	0.0004 (12)	0.0212 (10)	-0.0043 (9)
C4	0.0472 (13)	0.0469 (14)	0.0387 (10)	-0.0069 (11)	0.0154 (9)	0.0011 (9)
C5	0.0431 (13)	0.0481 (15)	0.0456 (11)	0.0046 (11)	0.0167 (10)	-0.0020 (9)
C6	0.0485 (14)	0.0474 (14)	0.0406 (10)	0.0035 (11)	0.0164 (9)	-0.0065 (9)
C7	0.0422 (12)	0.0473 (14)	0.0429 (10)	0.0003 (11)	0.0191 (9)	-0.0014 (9)
C8	0.0393 (12)	0.0407 (13)	0.0388 (9)	-0.0004 (10)	0.0158 (8)	0.0028 (9)
C9	0.0374 (12)	0.0458 (14)	0.0428 (10)	-0.0013 (10)	0.0110 (9)	0.0001 (9)
C10	0.0456 (13)	0.0460 (14)	0.0545 (11)	0.0041 (11)	0.0223 (10)	0.0025 (10)
C11	0.0424 (13)	0.0503 (15)	0.0437 (10)	-0.0070 (12)	0.0118 (9)	-0.0004 (10)
C12	0.0357 (12)	0.0511 (15)	0.0439 (10)	-0.0021 (11)	0.0120 (9)	-0.0015 (9)
C13	0.084 (2)	0.0570 (17)	0.0615 (14)	-0.0065 (15)	0.0316 (14)	-0.0174 (12)
01	0.0514 (11)	0.0661 (13)	0.0668 (10)	0.0032 (9)	0.0250 (8)	0.0088 (8)

Cl1—C4 1.742 (2) С8—С9 1.427 (3) 01—H1B 0.91 (4) C8-C12 1.428 (3) O1-H1A 0.84 (3) C9-C10 1.343 (3) N1-N2 C11-C12 1.388 (2) 1.342 (3) N1---C7 С2—Н2 0.9300 1.281 (3) N2-C8 1.327 (3) С3—Н3 0.9300 N3-C10 1.356 (3) С5—Н5 0.9300 N3-C11 1.355 (3) С6—Н6 0.9300 N3-C13 1.475 (3) С7—Н7 0.9300 C1-C2 1.398 (3) С9—Н9 0.9300 C1--C7 1.462 (3) C10-H10 0.9300 C1-C6 1.388 (3) C11-H11 0.9300 C2-C3 1.379 (3) C12-H12 0.9300 C3—C4 C13—H13C 1.376 (3) 0.9600 C4—C5 1.380(3) C13-H13A 0.9600 C5-C6 C13-H13B 1.373 (3) 0.9600 Cl1…C2ⁱ C11···C8^{iv} 3.516(3) 3.521 (2) C11…O1^{iv} Cl1…C7ⁱ 3.572 (2) 3.378 (3) Cl1…H10ⁱⁱ 2.9800 C13····C4^{xi} 3.598 (3) O1…N2ⁱⁱⁱ C13…C3^{xi} 2.859 (3) 3.490 (4) O1…C11^{iv} 3.378 (3) C3…H13A^x 2.9800 01…N1 3.089(3) 3.07 (3) C7…H1B^{vii} C7…H1A O1···H13B^{iv} 2.9100 2.91 (3) C8···H1B^{vii} 01…H3^v 2.5800 2.88 (4) O1…H11^{iv} 2.4900 C12···H1B^{vii} 3.06(3) O1…H13A^{vi} 2.8100 H1A…N1 2.26(3) N1…01 Н1А…С7 3.089(3) 2.91(3)N2…O1^{vii} 2.859 (3) H1B····H12ⁱⁱⁱ 2.5700 N1…H1A 2.26 (3) H1B…N2ⁱⁱⁱ 1.95 (4) N1…H6 2.6200 H1B…C7ⁱⁱⁱ 3.07 (3) N1…H9 2.4700 H1B…C8ⁱⁱⁱ 2.88 (4) N2…H1B^{vii} 1.95 (4) H1B…C12ⁱⁱⁱ 3.06(3) C2…Cl1^{viii} 3.521 (2) H1B…H7ⁱⁱⁱ 2.5100 C3…C10^{ix} 3.576 (3) H2…H7 2.4300 H3…O1^{xii} $C3 \cdots C13^x$ 3.490 (4) 2.5800 H6…N1 C4…C13^x 3.598 (3) 2.6200 C4…C10^{ix} 3.582 (3) H7…H1B^{vii} 2.5100 H7…H2 C5…C8^{ix} 3.473 (3) 2.4300 C5···C9^{ix} 3.569(3) H9…N1 2.4700 C6…C9^{ix} H10…H13A 3.464 (3) 2.4800 C6…C8^{ix} H10····Cl1ⁱⁱ 2.9800 3.561 (3)

Geometric parameters (Å, °)

C7…Cl1 ^{viii}	3.572 (2)	H11…H13B	2.3200
C8···C11 ^{iv}	3.516 (3)	H11…O1 ^{iv}	2.4900
C8····C6 ^{ix}	3.561 (3)	H12…H1B ^{vii}	2.5700
C8····C5 ^{ix}	3.473 (3)	H13A…H10	2.4800
C9····C5 ^{ix}	3.569 (3)	H13A…C3 ^{xi}	2.9800
C9···C6 ^{ix}	3.464 (3)	H13A…O1 ^{vi}	2.8100
$C10C4^{ix}$	3 582 (3)	H13B…H11	2 3200
$C10$ $C2^{ix}$	3.502 (3) 3.576 (3)		2.5200
	3.570 (5)		2.9100
HIA—OI—HIB	106 (3)	C1 - C2 - H2	120.00
$N_2 - N_1 - C_1$	113.95 (19)	C3—C2—H2	120.00
N1—N2—C8	112.75 (18)	С4—С3—Н3	120.00
C10—N3—C13	120.1 (2)	С2—С3—Н3	120.00
C11—N3—C13	121.1 (2)	C4—C5—H5	120.00
C10—N3—C11	118.73 (19)	С6—С5—Н5	120.00
C2—C1—C6	118.52 (19)	С5—С6—Н6	120.00
C6—C1—C7	122.5 (2)	С1—С6—Н6	120.00
C2—C1—C7	119.0 (2)	N1—C7—H7	119.00
C1—C2—C3	121.0 (2)	C1—C7—H7	119.00
C2—C3—C4	119.0 (2)	С10—С9—Н9	120.00
Cl1—C4—C5	119.88 (18)	С8—С9—Н9	120.00
C3—C4—C5	121.1 (2)	N3—C10—H10	119.00
Cl1—C4—C3	119.03 (17)	С9—С10—Н10	119.00
C4-C5-C6	1197(2)	C12—C11—H11	119.00
C1 - C6 - C5	120.7(2)	N3-C11-H11	119.00
N1 - C7 - C1	120.7(2) 121.9(2)	C8-C12-H12	119.00
$N_{2}^{-}C_{8}^{-}C_{12}^{12}$	121.9(2) 1183(2)	$C_{11} = C_{12} = H_{12}$	119.00
C_{0} C_{8} C_{12}	110.5(2) 114.43(10)	N3 C13 H13P	109.00
$\frac{1}{2}$	114.43(19) 127.27(10)	N2 C12 H12C	109.00
$N_2 = C_0 = C_1^0$	127.27(19)	$N_{2} = C_{12} = U_{12} A$	109.00
$C_{0} = C_{0} = C_{10}$	120.8(2)		109.00
N3-C10-C9	122.7(2)		110.00
	121.5 (2)		110.00
C8—C12—C11	122.0 (2)	H13A—C13—H13B	109.00
C7—N1—N2—C8	-174.99 (18)	C6—C1—C7—N1	-10.1 (3)
N2—N1—C7—C1	-179.43 (18)	C1—C2—C3—C4	-0.4 (3)
N1—N2—C8—C12	-178.00 (18)	C2—C3—C4—C5	0.0 (3)
N1—N2—C8—C9	2.6 (3)	C2—C3—C4—Cl1	179.29 (17)
C13—N3—C11—C12	179.2 (2)	C3—C4—C5—C6	0.2 (3)
C10-N3-C11-C12	-0.6 (3)	Cl1—C4—C5—C6	-179.11 (17)
C11—N3—C10—C9	0.3 (3)	C4—C5—C6—C1	0.1 (3)
C13—N3—C10—C9	-179.5 (2)	N2—C8—C9—C10	179.3 (2)
C2—C1—C6—C5	-0.5 (3)	N2—C8—C12—C11	-179.7 (2)
C7—C1—C2—C3	180.0 (2)	C9—C8—C12—C11	-0.2 (3)
C7—C1—C6—C5	-179.8 (2)	C12—C8—C9—C10	-0.2 (3)
C2-C1-C7-N1	170.6 (2)	C8—C9—C10—N3	0.1 (3)
C6-C1-C2-C3	07(3)	N3-C11-C12-C8	0.5 (3)
	(.)	1.0 011 012 00	5.5 (5)

Symmetry codes: (i) x+1, -y+3/2, z+1/2; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) x, -y+3/2, z-1/2; (vi) -x+1, -y+1, -z; (vii) x-1, y, z; (viii) x-1, -y+3/2, z-1/2; (ix) -x+1, -y+1, -z+1; (x) -x+1, y+1/2, -z+1/2; (xi) -x+1, y-1/2, -z+1/2; (xii) x, -y+3/2, z+1/2.

TT 1 1 1	. / ¥	\cap
Hvdrogen-bond geor	netrv (A.	Ύ)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1A…N1	0.84 (3)	2.26 (3)	3.089 (3)	173 (3)
O1—H1B···N2 ⁱⁱⁱ	0.91 (4)	1.95 (4)	2.859 (3)	174 (2)
C3—H3···O1 ^{xii}	0.93	2.58	3.421 (3)	150
C11—H11…O1 ^{iv}	0.93	2.49	3.378 (3)	159

Symmetry codes: (iii) x+1, y, z; (xii) x, -y+3/2, z+1/2; (iv) -x, -y+1, -z.

Fig. 2

